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Abstract. A comparative phenomenological analysis of Regge models with and without a hard pomeron
component is performed using a common set of recently updated data. It is shown that the data at small x
do not indicate explicitly the presence of the hard pomeron. Moreover, the models with two soft-pomeron
components (simple and double poles in the angular momentum plane) with trajectories having intercept
equal to one lead to the best description of the data not only at W > 3GeV and at small x but also at all
x ≤ 0.75 and Q2 ≤ 30000GeV2.

1 Introduction

It can be asserted confidently that Regge theory [1] is one
of the most successful approaches to describe high energy
scattering of hadrons. Since some of the important ingre-
dients of amplitudes such as vertex functions or couplings
cannot be calculated (derived) theoretically, a number of
models are based on additional assumptions. Concerning
the leading Regge singularity, the pomeron, even its inter-
cept is a subject of lively discussions. Moreover, the proper
Regge models, as well as the models inspired by QCD or by
other approaches having elements of the Regge approach,
are more or less successful when applied to processes in-
duced by photons (for an obviously incomplete list, see
[2–16]).

Two methods are currently used to construct a phe-
nomenological pomeron model for pure hadronic ampli-
tudes. In the first one, the pomeron is supposed to be a
simple pole in the angular momentum (j) plane, with in-
tercept αP(0) > 1. This property is necessary to explain
the observed growth of the total cross-sections with en-
ergy. Then, such a pomeron must be unitarized because it
violates unitarity. In the second approach, the amplitude
is constructed from the beginning in accordance with gen-
eral requirements imposed by unitarity and analyticity.
Here the pomeron has αP(0) = 1 and must be a singular-
ity harder than the simple pole is (again because of the
rising cross-sections).

The hypothesis of the pomeron with αP(0) > 1 (called
sometimes a “supercritical” pomeron) has a long history
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(see for example [17]); it is supported presently by per-
turbative QCD where the BFKL pomeron [18] has ∆P =
αP(0) − 1 ≈ 0.4 in the leading logarithmic approxima-
tion (LLA). However, the next correction to ∆P in LLA is
large and negative [19], the further corrections being un-
known yet. As a consequence, the intercept of the pomeron
is usually determined phenomenologically from the ex-
perimental data. In their popular supercritical pomeron
model, Donnachie and Landshoff [20] found αP(0) = 1.08
from the data on hadron–hadron and photon–hadron total
cross-sections. When the model was applied in deep inelas-
tic scattering, namely to the proton structure functions,
the authors needed to add a second pomeron, “hard” (in
contrast with the first one called a “soft” pomeron, be-
cause of its intercept near 1), with a larger intercept
αhP(0) ≈ 1.4 [7,16].

At the same time, a detailed comparison [21–23] of
various models of the pomeron with the data of the to-
tal cross-section shows that a better description (smaller
value of χ2 and more stable values of the fitted parame-
ters when the minimal energy of the data set is varying) is
achieved in alternative models with the pomeron having
intercept one, but with a harder j singularity, for exam-
ple, a double pole. Thus, the soft dipole pomeron (SDP)
model was generalized for the virtual photon–proton am-
plitude and applied to the proton structure function (SF)
in a wide kinematical region of deep inelastic scattering
[8]. This model also has two pomeron components, each
of them with intercept αP(0) = 1; one is a double pole
and the other one is a simple pole.

Recent measurements of the SF have become available,
from the H1 [24] and ZEUS [25,26] collaborations; they
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Table 1. Sets of observables used in the fitting procedure (note that the mentioned year
does not correspond to the data-taking period, but rather to the final publication). For a
description of the different regions, see the text

Observable Region A (A1) Region B (B1) Region C
Exp.-year of pub. Reference No. points No. points No. points

F2

H1-1995 [27] 85 85 93
H1-1996 [28] 37 37 41
H1-1997 [29] 21 21 21
H1-2000 [30] 51 51 111
H1-2001 [24] 127 127 133
ZEUS-1997 [32] 34 34 34
ZEUS-1999 [33] 44 44 44
ZEUS-2000 [25] 70 70 70
ZEUS-2001 [26] 181 181 226
NMC-1997 [34] 59 65 156
E665-1996 [35] 80 80 91
SLAC-1990/92 [36] 0 7(0) 136
BCDMS-1989 [37] 5(0) 5(0) 175

σγ,p
tot

1975/78;ZEUS-1994;H1-1995 [38] 31 99 99

Total 825 (820) 906 (894) 1430

Total 825 (820) 906 (894) 1430

complete or correct the previous data near the HERA col-
lider [27–33]1 and from fixed target experiments [34–38].
They have motivated us to test and compare the above
mentioned pomeron models of the proton structure func-
tion F2(x,Q2) for the widest region of Q2 and x.

In this paper, we would like to determine how cru-
cial or not is the existence of a hard pomeron component
(having in mind the previous successes of the soft dipole
pomeron model without a hard pomeron component). We
support the point of view that the pomeron is an universal
reggeon: only the vertex functions are different with dif-
ferent processes. This means that the pomeron trajectory
(or trajectories in the case of two components) could not
depend on the external particles, i.e., on the virtuality Q2

of the photon in DIS. This circumstance partially dictates
the choice of the models under consideration. Our aim
is to propose a detailed quantitative comparison of some
models, satisfying the hypothesis of universality, with and
without a hard pomeron.

This comparison is based on the χ2 obtained by fitting,
rather than arguments firmly justified from the theory.
Details of the fitting procedure, particularly of the choice
of the experimental data, are given in the next section.
In Sect. 3, the proposed models are defined (or redefined)
and their comparison is performed in two steps: the low
x analysis allows one to select the best ones kept in the
extended x range.

1 Because the newest data [26] fully cover the data of [31]
and are more precise, we exclude the set [31] from our fits

2 Fitting procedure: Details

The choice of the data set may have crucial consequences
in the definitive conclusions of any analysis. Thus, a set
including the most recent and older data has been used
in the fits of the models of the proton SF. These updated
data are listed and referenced in Table 1. We have fitted
the models in three kinematic regions: A, B and C. These
are

W > 6GeV, x ≤ 0.07, Q2
max = 3000GeV2, Region A,

(2.1)
W > 3GeV, x ≤ 0.07, Q2

max = 3000GeV2, Region B,
(2.2)

W > 3GeV, x ≤ 0.75, Q2
max = 3000GeV2, Region C.

(2.3)
The determination of the regions A (with 825 points) and
B (with 906 points) is arbitrary enough, especially con-
cerning the upper limit for x, aiming to select a “small”
x.

The second region (B) is the extension of region A for
W > 3GeV. One can see from Table 1 that the difference
between the two comes mainly from the added data on
the cross-section σγp

tot, when we are going from A to B.
We remark that the pure hadronic cross-sections data

at s1/2 ≥ 5GeV are described well by the dipole pomeron
[22,23], whereas the physical threshold for the NN inter-
action is s1/2

NN ∼ 2GeV. For the γN interaction the thresh-
old is lower, s1/2

γN ≡ WγN ∼ 1GeV. Thus one can expect
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a good description of the low W data at least within the
soft dipole pomeron model.

Running a few steps forward we should note that there
are a few data points from the fixed target experiments
[36,37] in the above mentioned regions A (5 points of
BCDMS experiment) and B (5 points of BCDMS and 7
points of SLAC experiments) that lead to some problems
in the fit. Firstly, they contribute to the χ2 noticeably
more than the other points do. Secondly, an analysis of
all the models we consider here shows that they destroy
the stability of the parameters values when one goes from
region A to region B. The problems disappear if these 12
points are eliminated from our fit. Possibly, at small x,
there is a small inconsistency (due to normalization?) be-
tween the experiments. In the following, we present the
detailed results of a fit without these points (the corre-
sponding data sets are denoted as A1 and B1), but we
give also the values of χ2 for the full data sets, A and B.

The third region (C) includes all data listed in Table 1.
The relative normalization among all the experimental
data sets has been fixed to 1. Following the suggestion of
[30], some data from [28] are considered as obsolete and su-
perseded. They correspond to (Q2 ≥ 250 GeV2, for all x),
(Q2 = 200 GeV2, for x < 0.1) and (Q2 = 150 GeV2, for
x < 0.01). We cancelled the ancient values (with moder-
ate Q2 ≤ 150 GeV2: 88 from [28] and 23 from [29]) which
have been duplicated in the more recent high precision
measurements [24] (see also footnote1). We have excluded
the whole domain Q2 ≥ 5000GeV2 from the fit (19 data
points from [30] and 2 from [31]), because the difference
(experimentally observed) between e−p and e+p results
cannot be (and should not be) explained by pomeron +
f exchange. No other filtering of the data has been per-
formed. Experimental statistical and systematic errors are
added in quadrature.

As usual, we “measure” the quality of the agreement
of each model with the experimental data by the χ2, mini-
mized using the MINUIT computer code. The ensuing de-
termination of the free parameters is associated with the
corresponding one-standard deviation errors. The results
are displayed below2.

3 Regge models in deep inelastic scattering
and phenomenological analysis

We stress again that there are numerous models for the
proton SF, inspired by a Regge approach, which describe
more or less successfully the available data on the SF
in a wide region of Q2 and x. Here, we consider two of
them (and their modifications): the two-pomeron model of
Donnachie and Landshoff [7] and the soft dipole pomeron
model [8], incorporating explicitly the ideas of universal-
ity for a reggeon contribution (in the Born approxima-
tion) and of Q2-independent intercepts for pomeron and
f -reggeon trajectories. We compare these models using
the above common set of experimental data.

2 In following Tables 2–7 the values of the parameters and
errors are presented in the form given by MINUIT, not rounded

3.1 Kinematics

We use the standard kinematic variables to describe deep
inelastic scattering (DIS):

e(k) + p(P ) → e(k′) +X, (3.1)

where k, k′, P are the four-momenta of the incident elec-
tron, the scattered electron and the incident proton. Q2 is
the negative squared four-momentum transfer carried by
the virtual exchanged photon (the virtuality),

Q2 = −q2 = −(k − k′)2. (3.2)

x is the Bjorken variable

x =
Q2

2P · q , (3.3)

W is the center of mass energy of the (γ∗, p) system, re-
lated to the above variables by

W 2 = (q + P )2 = Q2 1− x
x

+m2
p, (3.4)

mp being the proton mass.

3.2 Soft and hard pomeron models at small x

3.2.1 Soft + hard pomeron (S + HP) model

Considering the two-pomeron model of Donnachie and
Landshoff (D-L), we use a recently published variant [7]
and write the proton SF as the sum of three Regge con-
tributions3: a hard and a soft pomeron and an f -reggeon

F2(x,Q2) = Fhard + Fsoft + Ff , (3.5)

where

Fhard = Ch

(
Q2

Q2 +Q2
h

)1+εh (
1 +

Q2

Q2
h

)(1/2)εh ( 1
x

)εh

,

(3.6)

Fsoft = Cs

(
Q2

Q2 +Q2
s

)1+εs
(
1 +

√
Q2

Q2
s0

)−1(
1
x

)εs

,

(3.7)

Ff = Cf

(
Q2

Q2 +Q2
f

)αf (0)(
1
x

)αf (0)−1

, (3.8)

with the cross-section for the real photon–proton interac-
tion

3 Other variants exist for the two-pomeron model of Don-
nachie and Landshoff; for a recent example see [16], with a
modified soft pomeron term and additional factors (1 − x)b in
each term. We repeated calculations for this new version; how-
ever, we failed to obtain χ2/d.o.f. < 1.5 even for the region
A1 if the soft pomeron term (3.7) does not have a square root
factor
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Table 2. Parameters of the “soft + hard pomerons” model [7] obtained from our
fits in the regions A1 and B1

Parameter Fit A1 (W > 6GeV) Fit B1 (W > 3GeV)
value ± error value ± error

Ch .413691E − 01 .103579E − 02 .414166E − 01 .101790E − 02
εh .446301E + 00 .345355E − 02 .446417E + 00 .332224E − 02
Q2

h (GeV2) .969560E + 01 .218725E + 00 .943111E + 01 .196994E + 00

Cs .350712E + 00 .300131E − 02 .358574E + 00 .299026E − 02
εs .910718E − 01 .143339E − 02 .859430E − 01 .129220E − 02
Q2

s (GeV2) .681235E + 00 .798191E − 02 .662121E + 00 .644231E − 02
Q2

s0 (GeV2) .179914E + 03 .170228E + 02 .164014E + 03 .152411E + 02

Cf .513504E − 03 .634801E − 04 .666879E − 03 .403468E − 04
αf (0) .631358E + 00 .531484E − 02 .601644E + 00 .393889E − 02
Q2

f (GeV2) .559569E − 05 .145753E − 05 .466174E − 05 .319957E − 06

χ2/d.o.f. 1.375 1.450

σγp
tot(W

2) =
4π2α

Q2 F2(x,Q2)|Q2=0

= 4π2α
∑

i=h,s,f

Ci

(Q2
i )1+εi

(W 2 −m2
p)

εi , (3.9)

where εf = αf (0)− 1.
We show in Table 2 the results of the fit performed in

the regions A1 and B1.
In order to take full advantage of the parameterization,

but in contradiction with the original more economic sug-
gestion of D-L, we allowed for the intercepts of the soft
pomeron and f -reggeon to be free.

In both regions, the values of Q2
f are found to be

too small. If we put the low limit for this parameter at
0.076GeV2 (≈ 4m2

π, minimal physical threshold in t-
channel), then χ2/d.o.f. increases up to 1.62 in the fit A1
and up to 1.71 in the fit B1.

If the above mentioned 12 BCDMS and SLAC points
are taken into account, then we obtain

χ2/d.o.f. = 1.378 in region A,
χ2/d.o.f. = 1.919 in region B.

with free intercepts of pomeron and f -reggeon.
One can see that decreasing the minimal energy of the

data set always leads to a deterioration of the fit.

3.2.2 Soft dipole pomeron (SDP) model

Defining the dipole pomeron model for DIS, we start from
the expression connecting the transverse cross-section of
the γ∗p interaction to the proton structure function F2
and the optical theorem for forward scattering amplitude4

σγ∗p
T (W 2, Q2) = 8π
mA(W 2, Q2; t = 0) (3.10)

4 Note the 8π factor in the optical theorem not included in
[8]

=
4π2α

Q2(1− x) (1 + 4m2
px

2/Q2)F2(x,Q2);

the longitudinal contribution to the total cross-section,
σγ∗p

L = 0 is assumed.
Though we consider in this subsection only a small

x, we give here the complete parameterization [8] valid
also at large values of x; it will be fully exploited in the
next section. The forward scattering at W far from the s-
channel thresholdWth = mp is dominated by the pomeron
and the f -reggeon,

A(W 2, t = 0;Q2) = P (W 2, Q2) + f(W 2, Q2), (3.11)

f(W 2, Q2) = iGf (Q2)(−iW 2/m2
p)

αf (0)−1

× (1− x)Bf (Q2), (3.12)

Gf (Q2) =
Cf(

1 +Q2/Q2
f

)Df (Q2) , (3.13)

Df (Q2) = df∞ +
df0 − df∞
1 +Q2/Q2

fd

, (3.14)

Bf (Q2) = bf∞ +
bf0 − bf∞
1 +Q2/Q2

fb

. (3.15)

As for the pomeron contribution, we take it in the two-
component form

P (W 2, Q2) = P1 + P2, (3.16)

with

P1 = iG1(Q2) ln(−iW 2/m2
p)(1− x)B1(Q2), (3.17)

P2 = iG2(Q2)(1− x)B2(Q2), (3.18)

where

Gi(Q2) =
Ci

(1 +Q2/Q2
i )

Di(Q2) , i = 1, 2, (3.19)



P. Desgrolard, E. Martynov: Regge models of the proton structure function 483

Table 3. Parameters fitted in the soft dipole pomeron model [8] simplified in the small-x
regions A1 and B1

Parameter Fit A1 (W > 6GeV) Fit B1 (W > 3GeV)
value ± error value ± error

C1 (GeV−2) .225143E − 02 .421451E − 05 .224891E − 02 .407498E − 05
Q2

1 (GeV2) .894226E + 01 .168688E − 01 .874944E + 01 .167058E − 01
Q2

1d (GeV2) .119309E + 01 .559420E − 02 .117951E + 01 .570880E − 02
d1∞ .126568E + 01 .230350E − 02 .126408E + 01 .227933E − 02
d10 .106016E + 02 .362899E − 01 .102917E + 02 .358647E − 01

C2 (GeV−2) −.914166E − 02 .184377E − 04 −.905778E − 02 .183380E − 04
Q2

2 (GeV2) .200616E + 02 .367670E − 01 .196531E + 02 .367190E − 01
Q2

2d (GeV2) .879811E + 00 .550583E − 02 .984752E + 00 .647570E − 02
d2∞ − d1∞ (fixed) .000000E + 00 .000000E + 00 .000000E + 00 .000000E + 00
d20 .142771E + 02 .874519E − 01 .121014E + 02 .774995E − 01

αf (0) (fixed) .785000E + 00 .000000E + 00 .785000E + 00 .000000E + 00
Cf (GeV−2) .297448E − 01 .792151E − 04 .295314E − 01 .693910E − 04
Q2

f (GeV2) .193497E + 02 .865825E − 01 .191139E + 02 .859755E − 01
Q2

fd (GeV2) .629179E + 00 .458333E − 02 .671289E + 00 .494717E − 02
df∞ .137787E + 01 .305155E − 02 .138335E + 01 .310407E − 02
df0 .418148E + 02 .249860E + 00 .381377E + 02 .226365E + 00

χ2/d.o.f. 0.945 0.976

Di(Q2) = di∞ +
di0 − di∞
1 +Q2/Q2

id

, i = 1, 2, (3.20)

Bi(Q2) = bi∞ +
bi0 − bi∞
1 +Q2/Q2

ib

, i = 1, 2. (3.21)

We would like to comment on the above expressions, es-
pecially the powers Di and Bi varying smoothly between
constants when Q2 goes from 0 to ∞. In spite of the appar-
ently cumbersome form they are a direct generalization of
the exponents d and b appearing in each term of the sim-
plest parameterization of the γ∗p amplitude

G(Q2) =
C

(1 +Q2/Q2
0)d

and (1− x)b.

Indeed, a fit to the experimental data shows unambigu-
ously that the parameters d and b should depend on Q2.

At small values x ≤ 0.07, which are our interest now,
it is not necessary to keep the factors (1−x)Bi , significant
only when x gets near 1, in (3.12), (3.17) and (3.18), with
Bi = Bi(Q2). In order to exclude in the expression for F2

(rather than for σγ∗p
T ) any factors (1 − x), we should fix

Bi = −1 in the above equations. In this case the S + HP
and the SDP models can be compared for small x under
similar conditions.

The results of fitting the data in the regions A1 and
B1 are given in Table 3.

The intercept of f -reggeon is then fixed at the value
αf (0) = 0.785 obtained [23] from the fit to the hadronic
total cross-sections.

One can see from this table that the quality of the
data description in the soft dipole pomeron model is quite

high. Furthermore, the values of the fitted parameters are
close in both regions. Thus we claim a good stability of
the model when the minimal energy W of the data set is
varying.

Moreover, and to enforce this statement, we have in-
vestigated the ability of the SDP model to describe data
in other kinematical regions namely with “small” x ≤ 0.1
and Q2

max = 3000GeV2. The results are as follows:

χ2/d.o.f. = 0.982 if W > 6GeV,
χ2/d.o.f. = 1.014 if W > 3GeV.

Parameters are stable again and are not strongly modified
as compared to those in Table 3 for the regions A1 and B1.

If BCDMS and SLAC points are included in the fits
the following results are obtained for x ≤ 0.07:

Region A: χ2/d.o.f. = 0.964,
Region B: χ2/d.o.f. = 1.041.

However, as already noted, some of the fitted parameters
are not stable under the transition from region A to re-
gion B (in the present case, mainly the parameters di0 are
concerned).

3.2.3 Modified two-pomeron (Mod2P) model

We already noted elsewhere [21,23,39] a very interesting
phenomenological fact which occurs for the total cross-sec-
tions. If a constant term (or a contribution from a Regge
pole with intercept one) is added to the ordinary “super-
critical” pomeron with αP(0) = 1 + ε (for example to the
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popular Donnachie–Landshoff model [20]) the fit to the
available data leads to the very small value of ε ∼ 0.001
and to a negative sign of the new constant term. This is
valid when pp and p̄p total cross-sections are considered
as well as when all cross-sections, including σγp

tot and σ
γγ
tot,

are taken into account. Due to this small value of ε one
can expand the factor (−is/s0)ε, entering in the super-
critical pomeron, keeping only two first terms and obtain,
in fact, the dipole pomeron model. We would like to em-
phasize that the resulting parameters in such a modified
Donnachie–Landshoff model for the total cross-sections
are very close to those obtained in the dipole pomeron
model.

It has been demonstrated above that the SDP model
for F2(x,Q2), simplified for low x, describes well (even
better than the S + HP model does) the DIS data in a
wide region of Q2. A natural question arises: does such a
situation remain possible for σγ∗p

T or for the proton struc-
ture function at any Q2 by modifying the two-pomeron
model? In what follows, we suggest a modification of the
model defined by (3.5)–(3.8) and argue that the answer to
the above question is positive.

Besides this we would like to compare variants with
and without a hard pomeron within the same model, i.e.
to compare variants under equivalent conditions.

In fact, we consider the original S + HP model modi-
fying only residues and redefining the coupling constants
to have for the cross-section the expression

σγp
tot(W

2) = 4π2α

{
Ch

εs

(
W 2

m2
p

− 1
)εh

+
Cs

εs

(
W 2

m2
p

− 1
)εs

+ Cf

(
W 2

m2
p

− 1
)αf (0)−1

}
. (3.22)

εs is inserted in the denominators in order to avoid large
values of Ch and Cs (this case occurs in the fit) when
εh = 0 and εs 
 1 are considered.

Thus we write

F2(x,Q2) = Fh + Fs + Ff , (3.23)

where

Fh =
ChQ

2
h

εs(m2
p/Q

2
h)εh

(
Q2

Q2 +Q2
h

)1+εh (
1 +

Q2

Q2
h1

)dh

×
(
1
x

)εh

, (3.24)

Fs =
CsQ

2
s

εs(m2
p/Q

2
s )εs

(
Q2

Q2 +Q2
s

)1+εs (
1 +

Q2

Q2
s1

)ds

×
(
1
x

)εs

, (3.25)

Ff =
CfQ

2
f

(m2
p/Q

2
f )

αf (0)−1

(
Q2

Q2 +Q2
f

)αf (0)(
1 +

Q2

Q2
f 1

)df

×
(
1
x

)αf (0)−1

. (3.26)

If εh is a free parameter bounded by εh � 0.25 the model
can be considered as a model with a hard pomeron contri-
bution. Analyzing the properties of this variant, we have
found that fitting the parameters to the data in the re-
gion B1 leads to a local minimum of χ2/d.o.f.(≈ 1.22)
for εh ≈ 0.326 ± 0.012 and εs ≈ 0.111 ± 0.005. We do not
present here the details of this fit, because there is another
minimum of χ2 in the Mod2P model, which is noticeably
deeper than those we found for a hard-pomeron variant.

This minimum corresponds to the model without a
hard pomeron contribution. It is a variant of the above
model when fixing εh = 0 and εs 
 1. The values of the
free parameters and χ2 for this case are given in Table 4.

One can see in Table 4 that dh > ds and that Ch is neg-
ative. Consequently, at some high values of Q2 > Q2

m(x),
the SF (3.23) turns out to become negative. Numerically
the minimal value of Q2

m where it occurs is e.g. Q2
m ∼

4 · 104 GeV2 at x ∼ 0.05. It is far beyond the kinematical
limit y = Q2/(x(s − m2

p)) ≤ 1, with s − m2
p ≈ 4EeEp,

in terms of the positron and proton beam energies of an
(ep) collider, Ee and Ep. For example, HERA measure-
ments are presently restricted by Q2(GeV2) � 105x. Be-
sides this, at such a high virtuality, one-photon exchanges
must be supplemented with other exchanges. On the other
hand, from a phenomenological point of view, a fit respect-
ing the condition δ = ds − d0 ≥ 0 yields the lower limit
δ = 0 and we obtained then χ2/d.o.f. ≈ 1.170 in the region
A1, better than in the S + HP model with a hard pomeron.
Finally, the result could be improved when replacing the
constants di by functions Di(Q2) such as (3.14) and (3.20)
in the SDP model. We do not consider this possibility in
order to avoid an extra number of parameters.

The values for the intercepts of pomeron (ε) and of
f -reggeon (αf (0)), obtained in [23] in the case of non-
degenerate and non-universal SCP are taken and fixed,
in accordance with the idea of reggeon universality (and
because the data for σγp

tot are insufficient to determine pre-
cisely and simultaneously both the intercepts and the cou-
plings).

For fits in the kinematical regions A and B (with the
points of BCDMS and SLAC included) we have

Region A: χ2/d.o.f. = 1.000,
Region B: χ2/d.o.f. = 1.031.

Thus, within the same Mod2P parameterization we have
considered two possibilities. One of them includes a hard
pomeron while the other one does not have such a con-
tribution. It should be emphasized again that the Mod2P
model gives a priori equivalent conditions (form of struc-
ture function, number of parameters and so on) for the
two cases. Comparing them we conclude that the variant
without a hard pomeron is more preferable because it bet-
ter describes the available data (e.g. 1.02 instead of 1.22
in terms of χ2/d.o.f. in region B1).

To complete the set of Regge models, we now present
another modification of the Donnachie and Landshoff
model. At the same time, it can be considered as a gener-
alization of the soft dipole pomeron model.
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Table 4. Values of the fitted parameters in the modified two-pomeron model

Parameter Fit A1 (W > 6GeV) Fit B1 (W > 3GeV)
value ± error value ± error

Ch (GeV−2) −.192098E + 00 .271723E − 05 −.192059E + 00 .270107E − 05
εh(fixed) .000000E + 00 .000000E + 00 .000000E + 00 .000000E + 00
Q2

h (GeV2) .104497E + 01 .179702E − 04 .104101E + 01 .179723E − 04
Q2

h1 (GeV2) .122424E + 01 .735648E − 04 .121985E + 01 .736369E − 04
d0 .288513E + 00 .324084E − 05 .288310E + 00 .325343E − 05

Cs (GeV−2) .191345E + 00 .270295E − 05 .191299E + 00 .268660E − 05
εs (fixed) .101300E − 02 .000000E + 00 .101300E − 02 .000000E + 00
Q2

s (GeV2) .986131E + 00 .169015E − 04 .984747E + 00 .169457E − 04
Q2

s1 (GeV2) .100600E + 01 .599531E − 04 .101035E + 01 .605215E − 04
ds .288236E + 00 .317282E − 05 .288028E + 00 .318833E − 05

Cf (GeV−2) .230926E + 01 .673588E − 02 .233077E + 01 .629381E − 02
αf (0) (fixed) .789500E + 00 .000000E + 00 .789500E + 00 .000000E + 00
Q2

f (GeV2) .100924E + 01 .476292E − 02 .979021E + 00 .447369E − 02
Q2

f1 (GeV2) .715930E + 01 .945411E − 01 .697097E + 01 .916898E − 01
df .324760E + 00 .881651E − 03 .325346E + 00 .880981E − 03
χ2/d.o.f. .996 1.023

3.2.4 Generalized logarithmic pomeron (GLP) model

We have found in [40] a shortcoming of the SDP model,
relative to the numerical values of the logarithmic deriva-
tive Bx = ∂ lnF2(x,Q2)/∂ ln(1/x) at large Q2 and small
x. Namely, in spite of a good χ2 in fitting the SF, the
theoretical curves for Bx are systematically slightly lower
than the data of this quantity extracted from F2. In our
opinion, one reason might be the insufficiently fast growth
of F2 with x at large Q2 and small x (the SDP model leads
to a logarithmic behavior in 1/x) On the other side, es-
sentially a faster growth of F2 (and consequently of Bx)
is, from a phenomenological point of view, a good feature
of the D-L model. However as stressed above, this model
leads to a worse χ2 than SDP does, especially in the region
B(B1) and due to σγp

tot at low energies.
Thus, we have tried to construct a model that incorpo-

rates a slow rise of σγp
tot(W 2) and simultaneously a fast rise

of F2(x,Q2) at large Q2 and small x. We propose below
a model intended to link these desirable properties, being
in a sense intermediate between the soft dipole pomeron
model (3.11)–(3.21) and the modified two pomeron (3.23)–
(3.26) model. Again, as for SDP, we give a parameteriza-
tion valid for all x, without restriction. We write

F2(x,Q2) = F0 + Fs + Ff , (3.27)

F0 = C0
Q2

(1 +Q2/Q2
0)

d0
(1− x)B0(Q2), (3.28)

Fs = Cs
Q2

(1 +Q2/Q2
s )ds

×L(W 2, Q2)(1− x)Bs(Q2), (3.29)

where

L(W 2, Q2) = ln
[
1 +

a

(1 +Q2/Q2
s�)ds�

(
Q2

xm2
p

)ε]
, (3.30)

Ff = Cf
Q2

(1 +Q2/Q2
f )

df

(
Q2

xm2
p

)αf (0)−1

×(1− x)Bf (Q2), (3.31)

and

Bi(Q2) = bi∞ +
bi0 − bi∞
1 +Q2/Q2

ib

, i = 0, s, f. (3.32)

For the γp total cross-section the model gives

σγp
tot(W

2) = 4π2α

[
C0 + CsL(W 2, 0)

+Cf

(
W 2

m2
p

− 1
)αf (0)−1

]
, (3.33)

with

L(W 2, 0) = ln
(
1 + a

(
W 2

m2
p

− 1
)ε)

.

A few comments on the above model are needed.
(1) In the original D-L model the dependence on x is in the
form (Q2/x)ε but with (Q2)ε absorbed in a coupling func-
tion (Q2/(Q2 + Q2

s ))
1+ε. The main modification (apart

from the replacement of a power dependence by a loga-
rithmic one) is that we inserted (Q2)ε into the “energy”
variable Q2/x and made it dimensionless. In a similar way
we modified the f term.
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(2) The new logarithmic factor in (3.29) can be rewritten
in the form

L(W 2, Q2)=ln
[
1 +

a

(1+Q2/Q2
s�)ds�

(
W 2 +Q2

m2
p

− 1
)ε]

.

Consequently, at Q2 = 0 andW 2/m2
p � 1 we have L(W 2,

0) ≈ ε ln(W 2/m2
p). Thus, σ

γp
tot(W 2) ∝ lnW 2 atW 2 � m2

p.
A similar behavior can be seen at moderate Q2 when the
denominator is ∼ 1. However, at not very large W 2/m2

p

or at sufficiently high Q2 the argument of the logarithm
is close to 1, and then

L(W 2, Q2) ≈ a

(1 +Q2/Q2
s�)ds�

(
W 2 +Q2

m2
p

− 1
)ε

,

simulating a pomeron contribution with the intercept
αP(0) = 1 + ε.
(3) We are going to justify that, in spite of its appearance,
the GLP model cannot be treated as a model with a hard
pomeron, even when ε issued from the fit is not small. In
fact, the power ε inside the logarithm is not the intercept
(more exactly: is not αP(0) − 1). The intercept is defined
as the position of the singularity of the amplitude in the
j plane at t = 0. In our case, the true leading Regge
singularity is located exactly at j = 1: it is a double pole
due to the logarithmic dependence. Let us consider any
fixed value of Q2 and estimate the term of the partial
amplitude As(W 2, t = 0) corresponding to Fs with the
Mellin transformation

φs(j, t = 0) ∼
∞∫

W 2
min

dW 2
(
W 2

W 2
min

)−j

As(W 2, t = 0)

∝
∞∫

W 2
min

dW 2

W 2 e−(j−1) ln(W 2/W 2
min)

× ln

(
1 + a

[(W 2 +Q2)/m2
p − 1]ε

(1 +Q2/Q2
s�)ds�

)
.

One can see that the singularities of φs(j, 0) are generated
by a divergence of the integral at the upper limit. To ex-
tract them we can put the low limit large enough, say at
W 2

1 . The remaining integral, from W 2
min to W 2

1 , will only
contribute to the non-singular part of φs. We can takeW 2

1
so large as to allow the approximation to be made

ln

(
1 + a

[(W 2 +Q2)/m2
p − 1]ε

(1 +Q2/Q2
s�)ds�

)
≈ ε ln(W 2/m2

p).

In this approximation

φs(j, t = 0) ∝
∞∫

ζ1

dζe−(j−1)ζζ ≈ 1
(j − 1)2

,

with ζ1 = ln(W 2
1 /m

2
p).

(4) Thus this model should be considered as a dipole po-
meron model. In order to distinguish it from the soft dipole
pomeron model presented in Sect. 3.2.2, we call this model
the generalized logarithmic pomeron (GLP) model.

Performing a fit in the regions A1 and B1, we fixed all
bi = 0, as required by the small x approximation, αf (0)
as in SDP, and obtained the results presented in Table 5.

In the “full” (i.e. with BCDMS and SLAC points) re-
gions A and B the model gives

Region A: χ2/d.o.f. = 0.949,
Region B: χ2/d.o.f. = 0.981.

Finally, we have in the kinematical regions where x ≤
0.1 (without BCDMS and SLAC points)

χ2/d.o.f. = 0.940 if W > 6GeV,
χ2/d.o.f. = 0.963 if W > 3GeV.

3.2.5 Comparison between models at small x

Let us briefly discuss the obtained results when x ≤ 0.07.
In order to make the comparison between the models
clearer, we collect the corresponding χ2

d.o.f.s in Table 6,
where we also recall some characteristics of the models.

All investigated models describe the data in the two
kinematical regions well. Nevertheless it is clear that the
models without a hard pomeron (the SDP model and es-
pecially the GLP one) are preferable to the original D-L
model, which include a hard pomeron with αP(0) > 1.

Thus, in our opinion the most interesting and impor-
tant result which has been derived from the above com-
parison of the models is that all SF data at x < 0.1 and
Q2 ≤ 3000GeV2 are described with a high quality with-
out a hard pomeron. Moreover, these data support the
idea that the soft pomeron either is a double pole with
αP(0) = 1 in the angular momentum j plane or is a
simple pole having the intercept αP(0) = 1 + ε with a
very small ε. There is no contradiction with perturbative
QCD where the BFKL pomeron has a large ε. Firstly, it
is well known that the corrections to the BFKL pomeron
are large and the result of their summation is unknown
yet. Secondly, the kinematical region (x 
 1, W 2 � Q2)
is a region where the Regge approach should be valid and
where non-perturbative contributions (rather than pertur-
bative ones) probably dominate.

In fact, we have two soft pomerons in the SDP and
LGP models, the first one a simple pole located in the j
plane exactly at j = 1 and giving a negative contribution
to the cross-section. This negative sign is a phenomeno-
logical fact, nevertheless such a term can be treated as
a constant part of the dipole pomeron rescatterings giv-
ing a negative correction to the single exchange. On the
other hand a simple pole with intercept equal to one can
be treated as a crossing-even component three-gluon ex-
change [41].
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Table 5. Values of the fitted parameters in the generalized logarithmic pomeron
model, simplified for low x

Parameter Fit A1 (W > 6GeV) Fit B1 (W > 3GeV)
value ± error value ± error

C0 (GeV−2) −.919120E + 00 .607030E − 02 −.911341E + 00 .578160E − 02
Q2

0 (GeV2) .811294E + 00 .777315E − 02 .815993E + 00 .766323E − 02
d0 .906425E + 00 .198450E − 02 .899318E + 00 .191816E − 02

Cs (GeV−2) .634448E + 00 .274663E − 02 .646539E + 00 .270025E − 02
a .123970E + 01 .112313E − 01 .128179E + 01 .110362E − 01
ε .316216E + 00 .106329E − 02 .305616E + 00 .102228E − 02
Q2

s (GeV2) .522737E + 00 .751212E − 02 .492611E + 00 .688701E − 02
ds .709957E + 00 .191620E − 02 .704023E + 00 .183934E − 02
Q2

s� (GeV2) .474034E + 00 .482852E − 02 .478131E + 00 .475273E − 02
ds� .553070E + 00 .161138E − 02 .541829E + 00 .158333E − 02
Cf (GeV−2) .206006E + 01 .139043E − 01 .200180E + 01 .111852E − 01
αf (0) (fixed) .785000E + 00 .000000E + 00 .785000E + 00 .000000E + 00
Q2

f (GeV2) .420091E + 00 .609578E − 02 .423339E + 00 .582411E − 02
df .736052E + 00 .300883E − 02 .730498E + 00 .298425E − 02
χ2/d.o.f. 0.941 0.968

Table 6. Comparison of the quality of data descriptions at small x in the four investigated two-
component models; the kinematical regions are defined in the text

Pomeron χ2/d.o.f.
Model of pomeron singularity Fit (W > 6GeV) Fit (W > 3GeV)

A1 (A) B1 (B)

Soft + hard pomeron simple poles 1.375 1.450
(3.5)–(3.8) α(0) > 1 (1.378) (1.919)
Soft dipole pomeron simple + double poles 0.945 0.976
(3.11)–(3.21) α(0) = 1 (0.964) (1.041)
Modified two-pomeron simple poles 0.996 1.023
(3.23)–(3.26) α(0) � 1, α(0) = 1 (1.000) (1.031)
generalized logarithmic pomeron simple + double poles 0.941 0.968
(3.27)–(3.32) α(0) = 1 (0.949) (0.981)

The successful description of the small-x domain
within the SDP and GLP models allows us to apply them5

to the extended region C, defined by the inequalities (2.3).

3.3 Soft pomeron models at large x

In this section we present the results of the fits to the ex-
tended x region, up to x ≤ 0.75, i.e. to region C, performed
in the soft dipole pomeron model and in the newly pro-
posed generalized logarithmic pomeron model. The values
of the fitted parameters, their errors, as well as χ2 are
given in Table 7.

In order to compare the quality of our fits, we have per-
formed as an example the same fit in the ALLM model [3].

5 We tried also to extend the Mod2P model to large x by
using simple (1 − x)Bi(Q

2) factors. We failed to get a good
agreement with the data

This model incorporates an effective pomeron intercept
depending on Q2 and cannot be considered as a Regge-
type model. Nevertheless, it leads to a quite good descrip-
tion of the data in the same kinematical region: we ob-
tained χ2/d.o.f. ≈ 1.11 by limiting the intercept of the
f -reggeon to a reasonable lower bound, αf (0) = 0.5.

The behavior of the theoretical curves for the cross-sec-
tion σγp

tot versus the center of mass energy squared and for
the proton structure function F2 versus x for Q2 ranging
from the lowest to the highest values is shown in Figs. 1–4
for both models.

One can see from the figures that
(1) both calculated γp cross-sections are above the two

experimental HERA results at high energy; rather,
they would be in agreement with the extrapolation
performed [33] from very low Q2. The GLP model
reveals a steeper rise with the energy than the SDP
model.



488 P. Desgrolard, E. Martynov: Regge models of the proton structure function

Fig. 1. Total γp cross-section versus W 2 in the
SDP model (solid line) and in the GLP model
(dashed line). Data of [33] extracted from the
SF at low Q2 by the ZEUS collaboration are
also shown in the figure but not included in
the fit

Fig. 2. Structure function at small Q2

versus x. The solid line is F2 calculated
within the SDP model, the dashed line
is F2 within the GLP model
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Table 7. Parameters obtained from the fit to the data set in region C ((2.3)) within the soft dipole
pomeron model (left) and the generalized logarithmic pomeron model (right)

SDP model GLP model

Parameter value ±error Parameter value ±error
C1 (GeV−2) .218680E − 02 .256755E − 05 Cs (GeV−2) .423296E + 00 .170170E − 02
Q2

1 (GeV2) .956123E + 01 .109758E − 01 a .168582E + 01 .185477E − 01
Q2

1d (GeV2) .148236E + 01 .425421E − 02 ε .453569E + 00 .148381E − 02
d1∞ .131702E + 01 .160481E − 02 Q2

s (GeV2) .196109E + 00 .310576E − 02
d10 .922671E + 01 .189982E − 01 ds .778123E + 00 .234125E − 02
Q2

1b (GeV2) .452916E + 00 .888518E − 02 Q2
s� (GeV2) .907316E + 00 .792859E − 02

b1∞ .279772E + 01 .639658E − 02 ds� .701566E + 00 .222564E − 02
b10 −.148999E + 02 .266583E + 00 Q2

sb (GeV2) .152412E + 02 .982361E + 00
bs∞ .105212E + 02 .224277E + 00
bs0 .239671E + 01 .194449E + 00

C2 (GeV−2) −.836487E − 02 .872702E − 05 C0 (GeV−2) −.918701E + 00 .452427E − 02
Q2

2 (GeV2) .205716E + 02 .195963E − 01 Q2
0 (GeV2) .138245E + 01 .855221E − 02

Q2
2d (GeV2) .197362E + 01 .703326E − 02 d0 .116463E + 01 .276393E − 02

d2∞ − d1∞ .000000E + 00 .000000E + 00 Q2
0b (GeV2) .685915E + 01 .230769E + 00

d20 .671123E + 01 .190778E − 01 b0∞ .680910E + 01 .538035E − 01
Q2

2b (GeV2) .735433E + 01 .744338E − 01 b00 .132385E + 01 .813090E − 01
b2∞ .333785E + 01 .444213E − 02
b20 .966971E + 00 .175115E − 01

αf (0) (fixed) .785000E + 00 .000000E + 00 αf (0) (fixed) .785000E + 00 .000000E + 00
Cf (GeV−2) .289448E − 01 .391243E − 04 Cf (GeV−2) .215084E + 01 .723332E − 02
Q2

f (GeV2) .157707E + 02 .227261E − 01 Q2
f (GeV2) .927183E + 00 .499666E − 02

Q2
fd (GeV2) .492041E + 00 .124914E − 02 df .868688E + 00 .119566E − 02

df∞ .136904E + 01 .136447E − 02 Q2
fb (GeV2) .284030E + 01 .906270E − 01

df0 .382620E + 02 .885396E − 01 bf∞ .355704E + 01 .806506E − 02
Q2

fb (GeV2) .811704E + 01 .817199E − 01 bf0 .891640E + 00 .608979E − 01
bf∞ .333808E + 01 .532874E − 02
bf0 .632053E + 00 .158222E − 01

χ2/d.o.f. 1.073 χ2/d.o.f. 1.064

(2) The calculated SDP and GLD proton structure func-
tions can be distinguished visually only outside the
fitted range, especially at high Q2, where the steeper
rise of the GLP model is evident.

(3) The SF curves calculated in the GLP model have
a larger curvature (especially at high Q2) than we
expected and consequently larger logarithmic deriva-
tives Bx = ∂ lnF2(x,Q2)/∂ ln(1/x) 6.

The last feature is reflected in the partial χ2 for dif-
ferent intervals of Q2, as can be seen in Table 8, where we
compare the quality of the data description in such inter-
vals. Indeed the GLP model “works” better in the region
of intermediate Q2, while the SDP model describes better
the data at small Q2 (including data on the total real γp
cross-section). A similar analysis made for intervals in x
would show that the SDP model is more successful in the

6 A comparative detailed investigation of the derivatives of
the proton structure with respect to x and Q2 is in progress

Table 8. Partial values of χ2 for different intervals of Q2 in
SDP and GLP models

Interval of Number of SDP GLP
Q2 (GeV2) points model model

Q2=0 99 123.69 131.93
0< Q2 ≤5 417 353.60 375.36
5< Q2 ≤50 539 642.06 629.73
50< Q2 ≤100 102 110.51 92.75
100< Q2 ≤500 154 121.56 122.12
500< Q2 ≤3000 119 157.88 146.40
0≤ Q2 ≤ 3000 1430 1509.30 1498.29

region of small and large values of x and the GLP model
is for intermediate x, in agreement with the fact that the
available data at intermediate Q2 have also intermediate
values of x.
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Fig. 3. Same as in Fig. 2 for interme-
diate Q2

4 Conclusion

First of all, we would like to emphasize once more two
important points.

(1) The kinematical regions A (or A1) and B (or B1)
where x is small are the domains where all conditions
to apply the Regge formalism are satisfied:W 2 � m2

p,
W 2 � Q2, x 
 1. However because of the universal-
ity of the reggeons and of the existing correlations
between pomeron and f -reggeon contributions, it is
important to fix αf (0) to the value determined from
the hadronic data on resonances and on elastic scat-
tering.

(2) Analyzing the ability of any model to describe the
data, it is necessary to verify how important the as-
sumptions are on which the model is based. A possible
mean holds in comparing the original model with an
alternative one constructed without such assumptions
(of course using a common set of experimental data).

In this work, we respect these two points and our con-
clusions are as follows.

Small x. We have shown that the available data can be
described without a hard pomeron component. Moreover,
the models without a hard pomeron lead to a better de-

scription of the data (by ≈ 30% in terms of χ2). Further-
more, the best description is obtained in a model where
the two pomeron components have trajectories with an
intercept equal to one.

We have proposed a new model for the proton struc-
ture function: the “generalized logarithmic pomeron”
model, which has two soft pomerons with intercepts equal
to one but which does not have a hard pomeron. The first
one is a simple j-pole while the other, leading, one, is a
double j-pole. The leading pomeron term at small Q2 be-
haves as an ordinary soft pomeron contribution, but at
high Q2 it mimics a contribution of a hard pomeron with
large intercept. In the region of small x this model gives
the best χ2/d.o.f.

Small and large x. Multiplying each i-component of the
soft dipole pomeron and of the generalized logarithmic
pomeron models by a factor (1 − x)Bi(Q2), we can de-
scribe not only the small-x data well, but also the data
at all x ≤ 0.75. As noted recently [16], these factors can
be considered as an effective contribution of all daugh-
ter trajectories associated with pomeron and f -reggeon.
Thus, their introduction is only an extension of the Regge
approach to the whole kinematical x region.

In spite of the almost equivalent qualities of descrip-
tion, a precise analysis shows that these two models dif-
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Fig. 4. Same as in Fig. 2 for large Q2.
The data represented in the lower row
of icons, at Q2 ≥ 5000GeV2, are not
included in the fit

ferently describe the data in the different regions of x and
Q2. The extended SDP model is more successful at small
x, while the extended GLP model better describes the
data at intermediate Q2 and x. It would be interesting to
construct a model incorporating the best features of both.

Concluding, we stress again that the available data on
the proton structure function and on the γp cross-section
do not yield explicit indications in favor of an existing
hard pomeron.
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